Generalized Iteration Space 21 Dependence Analysis

نویسنده

  • Luddy Harrison
چکیده

A large body of literature has developed concerning the automatic parallelization of numerical programs, and a quite separate literature has developed concerning the parallelization of symbolic programs. Because many symbolic programs make heavy use of array data and iterative constructs, in addition to more \symbolic" language features like pointers and recursion, it is desirable to fuse these bodies of work so that results developed for numerical programs can be applied to symbolic ones, and generalized so that they apply to the variety of language constructs encountered in symbolic computations. In this paper is described a framework, called generalized iteration space, that allows one to unify dependence analysis of array computations with dependence analysis of pointer computations. It is shown that sub-scripted array accesses as well as pointer dereferences can be seen as linear functions of generalized iteration space. We are applying this framework to the automatic parallelization of C and Lisp programs in two parallelizing compilers at CSRD, called Parcel Har89] and Miprac HA89].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.

متن کامل

Numerical Reckoning Fixed Points in $CAT(0)$ Spaces

In this paper, first we use an example to show the efficiency of $M$ iteration process introduced by Ullah and Arshad [4] for approximating fixed points of Suzuki generalized nonexpansive mappings. Then by using $M$ iteration process, we prove some strong and $Delta -$convergence theorems for Suzuki generalized nonexpansive mappings in the setting of $CAT(0)$ Spaces. Our results are the extensi...

متن کامل

New iteration process for approximating fixed points in Banach spaces

‎The object of this paper is to present a new iteration process‎. ‎We will show that our process is faster than the known recent iterative schemes‎. ‎We discuss stability results of our iteration and prove some results in the context of uniformly convex Banach space for Suzuki generalized nonexpansive mappings‎. ‎We also present a numerical example for proving the rate of convergence of our res...

متن کامل

An Example of Data Dependence Result for The Class of Almost Contraction Mappings

In the present paper, we show that $S^*$ iteration method can be used to approximate fixed point of almost contraction mappings. Furthermore, we prove that this iteration method is equivalent to CR iteration method  and it produces a slow convergence rate compared to the CR iteration method for the class of almost contraction mappings. We also present table and graphic to support this result. F...

متن کامل

New three-step iteration process and fixed point approximation in Banach spaces

‎In this paper we propose a new iteration process‎, ‎called the $K^{ast }$ iteration process‎, ‎for approximation of fixed‎ ‎points‎. ‎We show that our iteration process is faster than the existing well-known iteration processes using numerical examples‎. ‎Stability of the $K^{ast‎}‎$ iteration process is also discussed‎. ‎Finally we prove some weak and strong convergence theorems for Suzuki ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991